FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA) .

1.0 INTRODUCTION

The Programmable Counter Array (PCA) present on the
SST89E/V554RC and SST89E/V564RD is a special 16-bit
timer that has five 16-bit capture/compare modules. Each
of the modules can be programmed to operate in one of
four modes: rising and/or falling edge capture, software
timer, high-speed output, or pulse width modulator. Module
4 can be programmed as a Watchdog Timer in addition to
the other four modes. Each module has a pin associated
with it in port 1. Module 0 is connected to P1.3 (CEXO0),
module 1 to P1.4 (CEX1), module 2 to P1.5 (CEX2), mod-
ule 3 to P1.6 (CEX3), and module 4 to P1.7 (CEX4).

2.0 PCA OVERVIEW

PCA provides more timing capabilities with less CPU inter-
vention than the standard timer/counter. Its advantages
include reduced software overhead and improved accu-
racy. The PCA consists of a dedicated timer/counter which
serves as the time base for an array of five compare/cap-
ture modules. Figure 3-1 shows a block diagram of the
PCA. External events associated with modules are shared

Application Note
June 2003

with corresponding Port 1 pins. Port pins not used by the
PCA modules can still be used for standard I/O. Each of the
five modules can be programmed in any of the following
modes:

* Rising and/or falling edge capture
* Software timer

» High speed output

* Watchdog Timer (Module 4 only)
* Pulse Width Modulator (PWM)

3.0 PCA TIMER/COUNTER

The PCA timer is a free-running 16-bit timer consisting of
registers CH and CL (the high and low bytes of the count
values). The PCA timer is common time base for all five
modules and can be programmed to run at 1/12 the oscilla-
tor frequency, 1/4 the oscillator frequency, Timer O overflow,
or the input on the ECI pin (P1.2). The timer/counter source
is determined from the CPS1 and CPSO bits in the CMOD
SFR as shown in Table 3-1. Table 3-2 summarizes
Modes 0-3 clock inputs at two common frequencies.

TABLE 3-1: PCA TIMER/COUNTER SOURCE
CPS1 CPSO 12 Clock Mode 6 Clock Mode
0 0 fosc /12 fosc /6
0 1 fosc /4 fosc /2
1 0 Timer 0 overflow Timer 0 overflow
1 1 External clock at ECI pin External clock at ECI pin
(maximum rate = fosc /8) (maximum rate = fosc /4)
T3-1.0 2052
~4—16 Bits Each —»
—>| Module 0 |<—> P1.3/CEX0
> Module 1 |<—> P1.4/CEX1
~— 16 Bits —» |
PCA Timer/Counter =I Module 2 |<—> P1.5/CEX2
—| Module3 |[«—= PLG/CEX3
—>| Module 4 |<—> P1.7/CEX4
2052 F01.0
FIGURE 3-1: PCA TIMER/COUNTER AND COMPARE/CAPTURE MODULES

©2003 Silicon Storage Technology, Inc.
S72052-01-000 6/03

The SST logo, SuperFlash, and FlashFlex are registered trademarks of Silicon Storage Technology, Inc.

These specifications are subject to change without notice.

FlashFlex51 Microcontroller
o Using the Programmable Counter Array (PCA)

Application Note
TABLE 3-2: PCA TIMER/COUNTER INPUTS

Clock Increments

PCA Timer/Counter Mode 12 MHz 16 MHz
Mode 0: fosc/12 1 psec 0.75 usec
Mode 1: 330 nsec 250 nsec

Mode 2: Timer 0 Overflows?
Timer 0 programmed in:

8-bit mode 256 psec 192 psec

16-bit mode 65 msec 49 psec

8-bit auto-reload 1to 255 psec 0.75 to 191 psec
Mode 3: External Input MAX 0.66 psec 0.50 psec

T3-2.0 2052
1. In Mode 2, the overflow interrupt for Timer 0 does not need to be enabled.

PCA Timer/Counter Mode Register! (CMOD)

Location 7 6 5 4 3 2 1 0 Reset Value

D9H CIDL WDTE - - - CPS1 CPSO ECF 00xxx000b
1. Not bit addressable

Symbol Function

CIDL Counter Idle Control:
0: Programs the PCA Counter to continue functioning during idle mode
1: Programs the PCA Counter to be gated off during idle
WDTE Watchdog Timer Enable:
0: Disables Watchdog Timer function on PCA module 4
1: Enables Watchdog Timer function on PCA module 4
- Not implemented, reserved for future use.
Note: User should not write ‘1's to reserved bits. The value read from a reserved bit is indeterminate.

CPsS1 PCA Count Pulse Select bit 1
CPSO PCA Count Pulse Select bit 2
Selected
CPS1 | CPSO | PCA Input!
0 0 0 Internal clock, fosc/6 in 6 clock mode (fosc/12 in 12 clock mode)
0 1 1 Internal clock, fosc/2 in 6 clock mode (fosc/4 in 12 clock mode)
1 0 2 Timer O overflow
1 1 3 External clock at ECI/P1.2 pin
(max. rate = fosc/4 in 6 clock mode, fosc/8 in 12 clock mode)

1. fosc = oscillator frequency

ECF PCA Enable Counter Overflow interrupt:
0: Disables the CF bitin CCON
1: Enables CF bit in CCON to generate an interrupt

©2003 Silicon Storage Technology, Inc. S72052-01-000 6/03

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA) °

Table 3-3 lists the CMOD initialization values associated
with selecting different PCA count pulse sources. This list
assumes that PCA will be left running during idle mode.

The CCON register shown below is associated with all
PCA timer functions. It contains the run control bit (CR) and
overflow flags for the PCA timer (CF) and all modules
(CCFx). To run the PCA the CR bit (CCON.6) must be set
by software. Clearing the bit will turn off PCA. When the

Application Note

PCA counter overflows, the CF (CCON.7) will be set, and
an interrupt will be generated if the ECF bit in the CMOD
register is set. The CF bit can only be cleared by software.
Each module has its own timer overflow flag or capture flag
(CCFO for module 0, CCF4 for module 4, etc.). They are
set when either a match or capture occurs. These flags can
only be cleared by software. CF and CCFn bits can also be
set by software.

TABLE 3-3: CMOD VALUES
CMOD Value

PCA Count Pulse Selected Without Interrupt Enabled With Interrupt Enabled

Internal clock, fosc/12 OOH 01H

Internal clock, fosc/4 02H 03H

Timer 0 overflow 04H O5H

External clock at P1.2 06H 07H

T3-3.0 2052

PCA Timer/Counter Control Register! (CCON)

Location 7 6 5 4 3 2 1 0 Reset Value

D8H CF CR - CCF4 CCF3 CCF2 CCF1 CCFO 00x00000b

1. Bit addressable

Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD
is set. CF may be set by either hardware or software, but can only cleared by software.

Set by software to turn the PCA counter on. Must be cleared by software to turn the

Note: User should not write ‘1’s to reserved bits. The value read from a reserved bit is indeterminate.

PCA Module 4 interrupt flag. Set by hardware when a match or capture occurs.
PCA Module 3 interrupt flag. Set by hardware when a match or capture occurs.
PCA Module 2 interrupt flag. Set by hardware when a match or capture occurs.

PCA Module 1 interrupt flag. Set by hardware when a match or capture occurs.

Symbol Function
CF PCA Counter Overflow Flag
CR PCA Counter Run control bit

PCA counter off.
- Not implemented, reserved for future use.
CCF4

Must be cleared by software.
CCF3

Must be cleared by software.
CCF2

Must be cleared by software.
CCF1

Must be cleared by software.
CCFO

PCA Module 0 interrupt flag. Set by hardware when a match or capture occurs.
Must be cleared by software.

©2003 Silicon Storage Technology, Inc.

$72052-01-000 6/03

FlashFlex51 Microcontroller

o Using the Programmable Counter Array (PCA)

Application Note
4.0 COMPARE/CAPTURE MODULES

Each PCA module has a mode SFR with it. These registers
are: CCAPMO for module 0, CCAPM1 for module 1, etc.
Each register contains 7 bits that are used to control the
mode in which each module will operate. See Table 4-1.

The ECCF bit (CCAPMNO where n = 0, 1, 2, 3, or 4
depending on module) will enable the CCF flag in the
CCON SFR to generate an interrupt when a match or com-
pare occurs. PWM (CCAPMnN1) enables the pulse width
modulation mode. The MATn (CCAPMnN3) bit when set, will
cause the CCFn bit in the CCON register to be set when
there is a match between the PCA counter and the mod-
ule’s capture/compare registers. Additionally, the TOG bit
(CCAPMN2) when set, causes the CEXn output pin associ-
ated with that module to toggle when there is a match
between the PCA counter and the module’s capture/com-
pare registers.

Bits CAPN (CCAPMn4) and CAPP (CCAPMNS5) determine
whether the capture input will be active on a positive edge
or negative edge. The CAPN hit enables a capture at the
negative edge, and the CAPP bit enables a capture at the
positive edge. When both bits are set, both edges will be
enabled and a capture will occur for either transition. The
last bit in the register ECOM (CCAPMnN6) when set,
enables the comparator function. Tables 4-2 and 4-3 show
the CCAPMn settings for the various PCA functions.

There are two additional registers associated with each of
the PCA modules: CCAPnH and CCAPnNL. They are regis-
ters that hold the 16-bit count value when a capture occurs
or a comparison occurs. When a module is used in PWM
mode, these registers are used to control the duty cycle of
the output. See Table 4-4.

TABLE 4-1: PCA COMPARE/CAPTURE MODULE MODE REGISTER! (CCAPMN)

Location 7 6 5 4 3 2 1 0 Reset Value
DAH - ECOMO CAPPO CAPNO MATO TOGO PWMO ECCFO 00xxx000b
DBH - ECOM1 CAPP1 CAPN1 MAT1 TOG1 PWM1 ECCF1 00xxx000b
DCH - ECOM2 CAPP2 CAPN2 MAT2 TOG2 PWM2 ECCF2 00xxx000b
DDH - ECOM3 CAPP3 CAPN3 MAT3 TOG3 PWM3 ECCF3 00xxx000b
DEH - ECOM4 CAPP4 CAPN4 MAT4 TOG4 PWM4 ECCF4 00xxx000b

T4-1.0 2052
1. Not bit addressable
TABLE 4-2: PCA MODULE MODES WITHOUT INTERRUPT ENABLED
Reserved! | ECOMy?2 | CAPPy2 | CAPNy?2 | MATy2 | TOGy? | PWMy?2 | ECCFy? | Module Code
- 0 0 0 0 0 0 0 No Operation
- 0 1 0 0 0 0 0 16-bit capture on positive-edge trigger
at CEX[4:0]
- 0 0 1 0 0 0 0 16-bit capture on negative-edge trigger
at CEX[4:0]
- 0 1 1 0 0 0 0 16-bit capture on positive/negative-edge
trigger at CEX[4:0]
- 1 0 0 1 0 0 0 Compare: software timer
- 1 0 0 1 1 0 0 Compare: high-speed output
- 1 0 0 0 0 1 0 Compare: 8-bit PWM
- 1 0 0 1 Oor13 0 0 Compare: PCA WDT (CCAPM4 only)*
T4-2.0 2052
1. User should not write ‘1's to reserved bits. The value read from a reserved bit is indeterminate.
2.y=0,1,2,3,4
3. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.
4. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

©2003 Silicon Storage Technology, Inc.

$72052-01-000 6/03

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA)

®

Application Note

TABLE 4-3: PCA MoODULE MODES WITH INTERRUPT ENABLED
Reserved! | ECOMy?2 | CAPPy2 | CAPNy? | MATy2 | TOGy? | PWMy2 | ECCFy? | Module Code
- 0 1 0 0 0 0 1 16-bit capture on positive-edge trigger
at CEX[4:0]
- 0 0 1 0 0 0 1 16-bit capture on negative-edge trigger
at CEX[4:0]
- 0 1 1 0 0 0 1 16-bit capture on positive/negative-edge
trigger at CEX[4:0]
- 1 0 0 1 0 0 Compare: software timer
- 1 0 0 1 1 0 Compare: high-speed output
- 1 0 0 0 0 1 X3 Compare: 8-bit PWM
- 1 0 0 1 Oor14 0 X5 Compare: PCA WDT (CCAPM4 only)®
T4-3.0 2052
1. User should not write ‘1's to reserved bits. The value read from a reserved bit is indeterminate.
2.y=0,1,2,3,4
3. No PCA interrupt is needed to generate the PWM.
4. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.
5. Enabling an interrupt for the Watchdog Timer would defeat the purpose of the Watchdog Timer.
6. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

TABLE 4-4: PCA HiGH AND Low REGISTER COMPARE/CAPTURE MODULES
Direct Bit Address, Symbol, or Alternative Port Function RESET
Symbol | Description Address | MSB LSB Value
CCAPOH | PCA Module 0 FAH CCAPOH[7:0] OOH
CCAPoL | Compare/Capture | Ean CCAPOL[7:0] 00H
Registers
CCAP1H | PCA Module 1 FBH CCAP1H[7:0] OOH
ccAP1L | Compare/Capture | gpy CCAP1L[7:0] 00H
Registers
CCAP2H | PCA Module 2 FCH CCAP2H[7:0] OOH
ccAp2L | Compare/Capture | gcy CCAP2L[7:0] 00H
Registers
CCAP3H | PCA Module 3 FDH CCAP3H[7:0] OOH
CCAP3L | Compare/Capture | gpy CCAP3L[7:0] 00H
Registers
CCAP4H | PCA Module 4 FEH CCAP4H[7:0] OOH
CCAP4L | Compare/Capture | gy CCAP4L[7:0] 00H
Registers

T4-4.0 2052

©2003 Silicon Storage Technology, Inc.

$72052-01-000 6/03

FlashFlex51 Microcontroller

o Using the Programmable Counter Array (PCA)

Application Note
5.0 PCA OPERATIONAL MODES

5.1 Capture Mode

Capture mode is used to capture the PCA timer/counter
value into a module’s capture registers (CCAPnH and
CCAPnIL). The capture will occur on a positive edge, nega-
tive edge, or both on the corresponding module’s pin. To
use one of the PCA modules in the capture mode, either
one or both the CCAPM bits CAPN and CAPP for that
module must be set. When a valid transition occurs on the
CEX pin corresponding to the module used, the PCA hard-
ware loads the 16-bit value of the PCA counter register (CH
and CL) into the module’s capture registers (CCAPnL and
CCAPnNH). The CCFn bit for the module in the CCON SFR
is set by hardware. If the ECCFn bit in the CCAPMn SFR
are set, then an interrupt will be generated. In the interrupt
service routine, the 16-bit capture value must be saved in
RAM before the next event capture occurs. If a subsequent

capture occurred, the original capture values would be lost.
After the event flag (CCFn) has been set by hardware, the
user must clear the flag in software. (See Figure 5-1)

A common use for the PCA capture mode is to measure
the properties of a waveform. Properties such as the
period, pulse width or the phase difference of two wave-
forms are measured by determining the difference in cap-
ture values between two edges of the waveform. The
hardware support of the PCA capture mode allows accu-
rate measurement of these properties with low software
overhead. The following sample code shows how the PCA
capture mode can be used to measure the pulse width of a
waveform on the CEXO pin.

CCON | cF | cr | — [ccraccrs | ccra | ccr | ccro |
{ o/ o PCA Interrupt
E PCA Timer/Counter
5 CH cL
A o7 oot s
- apture :
CEXn O—¢ ; P ; \\// \\/
RN L 1670 :
: ; : CCAPnH | CCAPnL
Cr%g";'\fl'” — | Ecomn [cappn|capnn| MaTh | Togn | Pwmn [ECcEn | 2052 F02.0
0 0 0 0
FIGURE 5-1: PCA CAPTURE MODE
©2003 Silicon Storage Technology, Inc. S72052-01-000 6/03

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA) °

5.1.1 Sample Code For PCA Capture Mode

#include <stdio.h>
#include “SST89x5x4.h”

Application Note

/I This program is designed to use the PCA module to calculate the width of a
/I detected pulse. The pulse must begin with a rising edge and end with a falling

/I edge on the CEXO pin.

/I The HEADER FILE “SST89X5X4.h" is an SST proprietary header file that defines SST’s SFRs.

/I This file can be found on the SST website, or the BSL Demo Kit.

bit flag = 0;

unsigned int pulse_width = 0x00;
unsigned int capturel = 0x00;
unsigned int capture2 = 0x00;

void PCA_ISR() interrupt 6 using 1// PCA Interrupt Service routine
{
CCF0 =0;
if (flag == 0)
{
capturel = CCAPOL | (CCAPOH << 8);
CCAPMO = 0x11;

flag = 1;
}
else
{
capture2 = CCAPOL | (CCAPOH << 8);
pulse_width = capture2 - capturel;
CCAPMO = 0x21,
flag = 0;
}
}
void main()
{
CMOD = 0x03;
CH = 0x00;
CL = 0x00;
CCAPMO = 0x21;
Flag = 0;
IE = 0xCO;
CR=1;
while (1)
{
}

/I Rising or falling edge flag.

/I Final pulse width calculation is stored here.
/I Rising edge captured here.

// Falling edge captured here.

/I Clear the PCA flag

II'If positive edge, store in
/I capturel. Setup module
/I 0 for capturing falling edge

/I Capture falling edge
/I Final calculation.

/I Setup module 0 for

/I capturing rising edge.
/I Reset flag

//Setting up the PCA counter

/I Setup module zero in capture mode

/I Enable PCA interrupt

/I Start PCA counter

/I Software trap

©2003 Silicon Storage Technology, Inc.

$72052-01-000 6/03

FlashFlex51 Microcontroller

o Using the Programmable Counter Array (PCA)

Application Note
5.2 16-bit Software Timer Mode

The 16-bit software timer mode is used to trigger interrupt
routines, which must occur at periodic intervals. It is setup
by setting both the ECOM and MAT bits in the module’s
CCAPMRN register. The PCA timer will be compared to the
module’s capture registers (CCAPnL and CCAPNnH) and
when a match occurs, an interrupt will occur, if the ECCFn
(CCAPMnN SFR) bit for the module is set.

If necessary, a new 16-bit compare value can be loaded
into CCAPnH and CCAPNL during the interrupt routine.
The user should be aware that the hardware temporarily

disables the comparator function while these registers are
being updated so that an invalid match will not occur. Thus,
it is recommended that the user write to the low byte first
(CCAPNL) to disable the comparator, then write to the high
byte (CCAPNH) to re-enable it. If any updates to the regis-
ters are done, the user may want to hold off any interrupts
from occurring by clearing the ECCFn bit or the EA bit.
(See Figure 5-2.)

| cf | crR | — [ccra|cers | cor2 | cert | coro | CCON
Write to
CCAPNL Reset } —
Write to CCAPNH CCAPNL 1 O PCA Interrupt
CCAPNH !
1 0 U U :
Enable Match '
16-hit Comparator o// 0o
CH cL i 5
PCA Timer/Counter : :
| — |Ecomn|cappn|capnn| mMaTn | ToGn | Pwmn [ECcFn | Cgﬁﬁ'\ﬁ”
0 0 0 0
2052 F03.0
FIGURE 5-2: PCA COMPARE MODE (SOFTWARE TIMER)

©2003 Silicon Storage Technology, Inc.

$72052-01-000 6/03

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA) °

5.2.1 Sample Code For 16-bit Software Timer

#include <stdio.h>
#include “SST89x5x4.h”

Application Note

/I This program uses the PCA module 0 in 16-bit Timer mode.
/I This program will trigger an interrupt event every 20000 counts.
/I Assuming a 12MHz clock, an event should trigger every 20ms.

/I The HEADER FILE “SST89X5X4.h" is an SST proprietary header file that defines SST’'s SFRs.
/I This file can be found on the SST website, or the BSL Demo Kit.

void PCA_ISR() interrupt 6 using 1
{

unsigned int temp;

IE = |IE & OxBF;

CCF0=0;

temp = CCAPOL | (CCAPOH << 8);
temp += 0x4E20;

CCAPOL = temp;

CCAPOH =temp >> 8;

IE = IE | 0x40;
}

void main()

{
CMOD = 0x01;
CH = 0x00;
CL = 0x00;
CCAPOL = 0x20;
CCAPOH = 0x4E;
CCAPMO = 0x49;

IE = OxCO;
CR=1;

while(1)
{

/I Stop Interrupts

/I Clear Int flag

/I The following four lines

/Il of code increase the

/I compare value in CCAPO
/I by 20000, effectively

/I refreshing the timer.

/I Start interrupts

/I Setup PCA timer mode.
/I Init values

/I Set compare limit

/I Set Modules zero for 16bit Timer mode.

/I Enable Interrupts
/] Start PCA timer

©2003 Silicon Storage Technology, Inc.

$72052-01-000 6/03

®

Application Note

5.3 High Speed Output Mode

In this mode, the CEX output pin (on port 1) associated
with the PCA module will toggle every time there is a
match between the PCA counter (CH and CL) and the
capture registers (CCAPnH and CCAPnL). To activate
this mode, the user must set TOG, MAT, and ECOM bits
in the module’s CCAPMn SFR. High Speed Output mode
is much more accurate than software pin toggling since
the toggle occurs before branching to an interrupt. In this
case, interrupt latency will not affect the accuracy of the
output. When using High Speed Output mode, using an
interrupt is optional. Only if the user wishes to change the
time for the next toggle is it necessary to update the com-
pare registers. Otherwise, the next toggle will occur when
the PCA timer rolls over and matches the last compare
value. (See Figure 5-3.)

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA)

The following code shows how the PCA high speed output
mode can be used to generate a continuous square wave
on the module 0 output CEXO. After the PCA counter is
started, a match eventually occurs between the PCA
counter and the module capture registers. At this point, the
hardware will toggle the port pin. Then in the PCA interrupt
subroutine, the CPU adds a constant value to the capture
register to indicate when the next match should occur. Note
however that because the capture register must be
reloaded by software, the effective maximum toggle rate of
the signal is limited by the machine cycle count of the inter-
rupt subroutine. The PCA pulse width modulation mode
discussed later in this document shows a less software
intensive method of producing such waveforms.

| cf | crR | — [ccra|cers | cor2 | cert | coro | CCON
Write to
CCAPNL Reset }
Write to CCAPNH CCAPNL O/C PCA Interrupt
CCAPNH ;
1 0 U U :
Enable Match '
16-hit Comparator o/ 0o
ﬁ ﬁ Toggle
CH cL —fo7o — & —cexn
PCA Timer/Counter : : :
| — [Ecomn|cappn|capnn| maTn | Togn | Pwmn [EccFn Cgﬁﬁ'\ﬁ”
0 0 0
2052 F04.0
FIGURE 5-3: PCA HIGH-SPEED OUTPUT MODE

©2003 Silicon Storage Technology, Inc.

10

$72052-01-000 6/03

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA) °

5.3.1 Sample Code For High Speed Output

#include <stdio.h>

#include “SST89x5x4.h”

Application Note

/I The High Speed Output mode is used to toggle the CEX pin when a match occurs
/I between the PCA timer and the pre-loaded value in the compare registers.

/l The HEADER FILE “SST89X5X4.h" is an SST proprietary header file that defines SST's SFRs.
/I This file can be found on the SST website, or the BSL Demo Kit.

/l Maximum output with HSO mode without interrupts = 30.5 Hz signal.
/I Frequency = 16 MHz

/I PCA clock input = 1/4 x fosc -> 250 nsec

/I Output with interrupts for increasing 3000h count value = 4 MHz/6000h = 162.7 Hz signal

void PCA_ISR() interrupt 6 using 1

{

}

void main()

{

CCF0=0;
CCAPOH += 0x30;

CMOD = 0x02;
CL = 0x00;
CH = 0x00;

CCAPOL = OxFF;
CCAPOH = OxFF;
CCAPMO = 0x4D;

IE = OxCO;
CR=1;

while(1)
¢

/I Increase compare values by 3000h counts

/I Setup PCA Timer

/I Set Event trigger values

/I Set PCA module 0 for HSO mode

/I Start PCA timer.

©2003 Silicon Storage Technology, Inc.

S72052-01-000 6/03
11

FlashFlex51 Microcontroller

o Using the Programmable Counter Array (PCA)

Application Note

5.4 Pulse Width Modulator

The Pulse Width Modulator (PWM) mode is used to gener-
ate a continuous square-wave with an arbitrary duty cycle.
It generates 8-bit PWMs by comparing the low byte of the
PCA timer (CL) with the low byte of the compare register
(CCAPNL). When CL < CCAPnL the output is low. When
CL ?>= CCAPnL the output is high. To activate this mode,
the user must set the PWM and ECOM bits in the module’s
CCAPMnN SFR. (See Figure 5-4 and Table 5-1) In PWM
mode, the frequency of the output depends on the source
for the PCA timer. Since there is only one set of CH and CL
registers, all modules share the PCA timer and frequency.
The frequency is fixed to 256 counts of the PCA timer. Duty

cycle of the output is controlled by the value loaded into the
high byte (CCAPNH). Since writes to the CCAPNH register
are asynchronous, a new value written to the high byte will
not be shifted into CCAPNL for comparison until the next
period of the output (when CL rolls over from 255 to 00).

To calculate values for CCAPNH for any duty cycle, use the
following equation:

CCAPNnH = 256(1 —Duty Cycle)

where CCAPNH is an 8-bit integer and duty cycle is a
fraction.

CCAPNH
CCAPNL
| \
CL < CCAPnL 3
Enable > 8-bit Comparator ¢——{ |CEXn
ﬁ CL >= CCAPNL l
) 1
Overflow_ CL
PCA Timer/Counter
| — |Ecomn|cappn|capnn| MaTh | ToGn | PwMn [ECCFn | CC_'S';"\Q”
n=0to 2052 F05.0
0 0 0 0 0
FIGURE 5-4: PCA PuULSE WIDTH MODULATOR MODE
TABLE 5-1:. PuLse WIDTH MODULATOR FREQUENCIES
PWM Frequencyl

PCA Timer Mode 12 MHz 16 MHz
1/12 Oscillator Frequency 3.9 KHz 5.2 KHz
1/4 Oscillator Frequency 11.8 KHz 15.6 KHz
Timer 0 Overflow:

8-hit 15.5Hz 20.3 Hz

16-bit 0.06 Hz 0.08 Hz

8-bit Auto-Reload 3.9 KHz to 15.3 Hz 5.2 KHz to 20.3 Hz
External Input (Max) 5.9 KHz 7.8 KHz

T5-1.0 2052
1. PWM Frequency = (Fosc X Fosc Divider) / 256
©2003 Silicon Storage Technology, Inc. S72052-01-000 6/03

FlashFlex51 Microcontroller

Using the Programmable Counter Array (PCA) °

5.4.1 Sample Code For PWM

#include <stdio.h>
#include “SST89x5x4.h”

Application Note

/I This program generates a pulse by comparing the CL register with the
/I value stored in CCAPOL. If CL >= CCAPOL then the output is HIGH.

/I'If CL < CCAPOL then the output is LOW.

/I The duty cycle is determined by the value stored in CCAPOH.

/I The HEADER FILE “SST89X5X4.h" is an SST proprietary header file that defines SST’s SFRs.
/I This file can be found on the SST website, or the BSL Demo Kit.

void main()

{
CMOD = 0x02;
CL = 0x00;
CH = 0x00;

CCAPOL = 0x40;
CCAPOH = 0x40;
CCAPMO = 0x42;
CR=1;

while (1)
¢

/I Setup PCA timer

/I Set the initial value same as CCAPOH
/I 75% Duty Cycle
/I Setup PCA module 0 in PWM mode.

/I Start PCA Timer.

©2003 Silicon Storage Technology, Inc.

S72052-01-000 6/03
13

FlashFlex51 Microcontroller

o Using the Programmable Counter Array (PCA)

Application Note
5.5 Watchdog Timer

The Watchdog Timer mode is used to improve reliability in
the system without increasing chip count (See Figure 5-5).
Watchdog Timers are useful for systems that are suscepti-
ble to noise and/or power glitches. It can also be used to
prevent a hardware or software deadlock. During the exe-
cution of the user's code, if there is a deadlock, the Watch-
dog Timer will time out and an internal reset or WDT
interrupt will occur. Only module 4 can be programmed as
a Watchdog Timer (but still can be programmed to other
modes if the Watchdog Timer is not used).

To use the Watchdog Timer, the user pre-loads a 16-bit
value in the compare register. Just like the other compare
modes, this 16-bit value is compared to the PCA timer
value. If a match is allowed to occur, an internal reset will be
generated. In order to hold off the reset, the user has three
options: 1. periodically change the compare value so it will
never match the PCA timer, 2. periodically change the PCA
timer value so it will never match the compare values, or 3.

disable the watchdog timer by clearing the WDTE bit
before a match occurs and then re-enable it. The first two
options are more reliable because the Watchdog Timer is
never disabled as in option #3. If the program counter ever
goes astray, a match will eventually occur and cause an
internal reset. The second option is also not recommended
if other PCA modules are being used. Remember that the
PCA timer is the common time base for all modules;
changing the time base for other modules would not be a
good idea. Thus, in most application the first solution is the
best option.

The code below demonstrates how to initialize the Watch-
dog Timer. Module 4 can be configured in either compare
mode, and the WDTE bit in CMOD must also be set. The
user's software then must periodically change (CCAP4H,
CCAPA4L) to keep a match from occurring with the PCA
timer (CH, CL).

[coL [wote] — | — [— [cpsi]cpso| ecr | cmoD
Write to T
CCAP4L Reset :
Write to CCAP4H CCAP4L Module 4 :
CCAP4H 5
1 0 U U ;
Enable Match !
16-hit Comparator 0”0 Reset
CH cL
PCA Timer/Counter
| — [Ecomn|cappn|capnn| maTh | ToGn | PwMn [EccFn| CCAPMA
0 0 1 X 0 X
2052 F06.0
FIGURE 5-5: PCA WATCHDOG TIMER (MODULE 4 ONLY)

©2003 Silicon Storage Technology, Inc.

14

$72052-01-000 6/03

FlashFlex51 Microcontroller
Using the Programmable Counter Array (PCA) °

Application Note
5.5.1 Sample Code For Watchdog Timer

#include <stdio.h>
#include “SST89x5x4.h”

/I This program uses PCA module 4 for the Watchdog timer. Note that only module 4

/I can be used for the Watchdog timer. There are two ways of refreshing the timer to

/I avoid a Watchdog reset. The first way is to reset the CH and CL registers. This is

/I not recommended if you are using other PCA modules since disturbing the CH and

/I CL registers would disturb the functionality of those other modules. The second choice is
/I to change the values in CCAP4HI/L. This is the best way to go since it accomplishes

/I the same task of preventing Watchdog reset without the possibility of affecting the

[/l other PCA modules.

/l The HEADER FILE “SST89X5X4.h" is an SST proprietary header file that defines SST's SFRs.
/I This file can be found on the SST website, or the BSL Demo Kit.

void refresh_WDT();

void delay();
void main()
{
CCAPAL = OxFF; /I Setup PCA module 4 for Watchdog Timer
CCAP4H = OxFF;
CCAPM4 = 0x4C;
CMOD = CMOD | 0x40;
while (1)
{
refresh_WDT(); /I This function refreshes the WDT and should be
/I used periodically.
delay();
}
}
void delay()
unsigned int I;
for(i = 0; i < 1024; i++);
}

/**********WATC H DOG R E F R ES H *********/
void refresh_WDT()

{
EA=0;
CCAPA4L =0;
CCAP4H = CH,;
EA=1;
}
©2003 Silicon Storage Technology, Inc. S72052-01-000 6/03

15

FlashFlex51 Microcontroller
o Using the Programmable Counter Array (PCA)

Application Note
6.0 COMPREHENSIVE PCA PROGRAM

The following PCA code will run Module 0 in Capture mode, Module 1 in 16 bit timer mode, Module 2 in HSO mode,
Module 3 in PWM mode, and Module 4 in WDT mode simultaneously.

#include <stdio.h>
#include <stdlib.h>
#include “SST89x5x4.H”

bit flag = 0; /I Rising or falling edge flag.

unsigned int pulse_width = 0x00; // Final pulse width calculation is stored here.
unsigned int capturel = 0x00; /I Rising edge captured here.

unsigned int capture2 = 0x00; /I Falling edge captured here.

unsigned int HSO_Frequency = OxFFFF; /I HSO Frequency counter

void PCA_ISR() interrupt 6 using 1// PCA Interrupt Service routine

{
unsigned int temp = 0;
if (CCFO==1)
{
IE = IE & OxBF,; /I Stop PCA interrupt
CCF0 =0; /I Clear the PCA flag
if (flag == 0)
{
capturel = CCAPOL | (CCAPOH << 8); I'If positive edge, store in
CCAPMO = 0x11; /I capturel. Setup module
flag = 1; /1 0 for capturing falling edge
}
else
{
capture2 = CCAPOL | (CCAPOH << 8); /I Capture falling edge
pulse_width = capture2 - capturel; /I Final calculation.
CCAPMO = 0x21; /I Setup module 0 for
/I capturing rising edge.
flag = 0;
}
IE = IE | 0x40; /I Start PCA interrupt
}
else if (CCF1==1)
{
IE = IE & OxBF; I/l Stop PCA interrupt
CCF1=0; /I Clear Int flag
temp = CCAPLL | (CCAP1H << 8); /I The following four lines
temp += 0x4E20; /I of code increase the
CCAPLL =temp; /I compare value in CCAPO
CCAP1H =temp >> 8; /l by 20000, effectively
/I refreshing the timer.
IE = IE | 0x40; /I Start PCA interrupt
}
else if (CCF2 ==1)
{
IE = IE & OxBF,; /I Stop PCA interrupt
CCF2=0;
CCAP2H += 0x30; /I Increase compare values by 3000h counts
IE = IE | 0x40; /I Start PCA interrupt
}
}
©2003 Silicon Storage Technology, Inc. S72052-01-000 6/03

16

FlashFlex51 Microcontroller
Using the Programmable Counter Array (PCA) °

void delay()
{

unsigned int i;

for(i = 0; i < 1024; i++);
}

void refresh_WDT()

{
IE = IE & OXBF;
CCAPA4L = 0;
CCAP4H = CH;
IE = IE | 0x40;

}

void main()

{
CMOD = 0x43;
CH = 0x00;
CL = 0x00;

CCAPMO = 0x21;

CCAPLL = 0x20;
CCAP1H = Ox4E;
CCAPM1 = 0x49;

CCAP2L = OxFF;
CCAP2H = OxFF;
CCAPM2 = 0x4D;

CCAP3L = 0x40;
CCAP3H = 0x40;
CCAPM3 = 0x42;

CCAPA4L = OxFF;
CCAP4H = OxFF;
CCAPM4 = 0x4C;

IE = 0xCO;
CR=1;

while (1)
{
refresh_WDT();

delay();

Application Note

/I Stop PCA interrupt

I/l Start PCA interrupt

/[Setting up the PCA counter

/I Setup Module 0 in capture mode

/I Set Module 1 compare limit

/I Set Module 1 for 16bit Timer mode.

/I Set Event trigger values

/I Set PCA module 2 for HSO mode

/I Set the initial value same as CCAP3H

Il 75% Duty Cycle
/I Setup PCA module 3 in PWM mode.

/I Setup PCA module 4 for Watchdog Timer

/I Enable PCA interrupt
/I Start PCA counter

/I Software trap

/I This function refreshes the WDT and should be
/[used periodically.

Silicon Storage Technology, Inc. » 1171 Sonora Court « Sunnyvale, CA 94086 « Telephone 408-735-9110 « Fax 408-735-9036
www. SuperFlash.com or www.sst.com

©2003 Silicon Storage Technology, Inc. S72052-01-000 6/03
17

